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Abstract-Energy transfer by simultaneous conduction and radiation between two media in an intimate 
contact is considered with principle emphasis on the mathematical formulation of the radiative flux. To 
gain some insight into the effects introduced by radiative transfer, the formidable general problem is 
simplified to one-dimensional, steady-state, diffusion between two partially transparent media in intimate 
thermal contact. The numerical method of solution for the resulting coupled, non-linear, integro-dif- 
ferential equations is described in detail. The results are presented as a series of dimensionless temperature 
and corresponding flux distributions for a variety of optical and physical properties. Interpretation of 
these results is given both on the basis of physical reasoning and relative to the mathematical formulation. 

NOMENCLATURE 

Note that a subscript j, in all cases, indicates 
the particular quantity in either media. 

Fj, 
GC 

Jjt 

exponential integral function of 
order n of argument s ; 
net radiative flux ; 
irradiation on the solid/gas inter- 
face coming from chamber ; 
radiant energy flux leaving the 
interface ; 

kj, thermal conductivity ; 

Jk crystal length ; 

L thermal layer thickness ; 

specific heat (per unit weight) ; 
= UT;; 

L 
NY’ 

nj 
% 
lij, 

tij, 

T,, 
7;, 
T MY 
T co, 

uj, 
x, Y, z, 

length of bulk fluid bath ; 

= ~~~~3,lkJkJ; 
index of refraction ; 
net flux ; 
reflectance of interface between 
media i and j; 
transmittance of interface between 
media i and j (tii + rij = 1); 
steady chamber temperature ; 
temperature ; 
equilibrium melting temperature ; 
far field bath temperature ; 
fluid velocity ; 
Cartesian coordinates. 

Greek symbols 

t This paper is based on part of the dissertation sub- 
mitted by L. A. Tarshis in partial fulfillment of the Ph.D. 
requirements of the Materials Science Department, Stanford 
University. 

1 Formerly with the Dept. of Materials Science, Stanford 

a, absorptance ; 
B, r,i, (, tj, dummy variables of integration ; 

emittance ; 
;. Tj/T,; 

University, Stanford, California. 
$ Research Associate, Dept. of Materials Science, Stan- 

e:, TM/T, ; 

ford University, Stanford, California. xj> spectral absorption coefficient ; 
11 Professor of Mechanical Engineering, Purdue Univer- Pj, density ; 

sity, Lafayette, Indiana. 0, Stefan-Boltzmann constant ; 
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r, s’, optical distances in solid and liquid 
respectively ; 

Tj3 XjLj ; 

=m = x,L,. 

For definition of starred quantities see Table 2. 

1. INTRODUCTION 

PRIMARILY due to mathematical complexities, 
it has been common practice in engineering to 
neglect transfer by radiation, especially in 
condensed phases (solid and liquid), and to 
determine the temperature distribution and 
heat fluxes on the basis of conduction and/or 
convection alone. This assumption has usually 
been quite valid based on the fact that most 
materials of engineering application are either 

(i) used at relatively low temperatures where 
the radiant emission is small or 

(ii) absorb most radiant energy within a few 
atomic layers of the surface. 

The latter is especially true for metals whose 
optical absorption frequencies generally cor- 
respond to the frequencies of the emitted 
thermal radiation. However, in the more general 
realm of materials science, there are numerous 
materials which are, to various degrees, trans- 
parent to thermal radiation. In this category of 
materials are those substances used in optical 
lasers, e.g. ruby, sapphire, etc. When these 
materials are used at or near their relatively 
high melting temperatures, the radiant flux is 
not at all negligible compared to conductive or 
convective fluxes since very little thermal energy 
is actually absorbed by these molecules. 

It has only been within recent years that these 
problems of simultaneous heat transfer by 
different modes have been considered quanti- 
tatively with the principle application being 
to the radiation emitting, absorbing, and scatter- 
ing nature of the gas phase. Numerical solutions 
to the general conservation equation have been 
obtained, for certain simplified cases, in homo- 
geneous matter and have provided much in- 
sight into the general problem of energy trans- 

port. No solutions have been reported for 
simultaneous transfer for more than one absorb- 
ing and emitting medium in intimate thermal 
contact. 

The initial motivation for this study was to 
predict the temperature distributions and cor- 
responding thermal fluxes during the crystal 
growth of semi-transparent materials. Such 
information is essential in understanding the 
nature of solidification as well as in the actual 
control of the growth process. Therefore, such 
a situation has been modeled, mathematically, 
and the more general results for any two con- 
tacting absorbing media experiencing coupled 
radiative and conductive heat transport are 
presented. 

2. MATHEMATICAL FORMULATION 

This section is divided into three parts. In 
the first part, the generalized energy equations 
for the two media are derived, relative to a 
physical model, including some possible bound- 
ary conditions for two partially transparent, 
adjoining, media. In the second portion, the 
details for the particular example which we will 
solve are described. Lastly, the numerical 
procedure successfully used for solution are 
outlined. 

(a) Energy equation.\ 
The physical model and corresponding co- 

ordinate system are shown in Fig. 1. Material I 
is in perfect thermal contact with material II 
across the stationary plane x = z = 0; the 
former extending in the positive x direction to 
.Y = L,, the latter in the positive z direction to 
z= L,,. For the time being, the configuration 
is assumed to be finite in width (y direction) 
and the conditions on the ends are neglected. 
Considering the most general case of simul- 
taneous conduction, convection, and radiation, 
the equation of conservation of thermal energy 
within either media may be written : 

cjpj ~ = V . [kj VT, - CjPjUj~ - Fj] ; 

,j = I. II (1) 
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where the three terms in the brackets are the 
conductive, convective and radiative fluxes 
respectively in the jth phase. In these equations 
kj is the appropriate thermal conductivity; 
Pj the density; cj the specific heat; Tj the abso- 
lute temperature; uj the fluid velocity vector, 
and Fj the local radiative flux. As such, the 
solution to equation (1) is untenable and two 
immediate simpli~cations are made. The first 
is to assume that the steady state has been 
achieved and therefore aTj/~t = 0. As a result, 
one may obtain? 

j = I, II. (2) 

The second assumption, and probably the more 
critical, is to assume that lateral heat transport 
is of negligible importance. This is equivalent 
to assuming that the media described in Fig. 1 
are in~nitely wide (- cl;l < y < 00). These as- 
sumptions reduce the problem to a steady, 
one-dimensional, heat transfer analysis defined 
by the equation : 

- CjpjUjTj - F~ I= 0; 1 j = I, II (3) 

with the particular parameters defined in the 
proper media. Integrating equation (3) once 
with respect to distance, xj: 

i 

41- %I 
I II 

X=L, x=i-=o I& 

FIG. 1. Schematic of two media in intimate thermal contact. 

t Implicitly assumed in writing equation (1) is that pj Since radiative transfer methods are well 
and cj are constant. Therefore it follows that V . I(~ = 0. known [l, 21, the lengthy mathematical details 

kj~ - cjpjuj~ - Fj = -4j; j = I, II (4) 
j 

where qj is a constant total energy flux in the 
media. Furthermore, it has been assumed that, 
in the problem to be treated, the spectral 
absorption coefficient is independent of the 
wavelength of the radiation. Such an assumption 
is again necessary to make the equation tract- 
able. However, an example in which this assump- 
tion would be valid corresponds to the case of 
sapphire (A&O,) near its melting temperature. 
These simplifications, although limiting, permit 
mathematical solution and the results should 
still provide adequate insight into the general 
problem. Independent of the conditions else- 
where in the media, two boundary conditions 
must always be met at the interface. These are 
conservation of heat and continuity of tempera- 
ture resulting from the assumption of intimate 
contact. In terms of qj, the net energy flux in the 
respective positive directions in each material, 
these interface conditions yield : 

and 

41 = - 411 (5) 

I; = % (6) 

both applied at .X = z = 0. With the lengths 
Lii and L, fixed and interface conditions, equa- 
tions (5) and (6), required, it is only necessary 
to impose two additional boundary conditions 
to completely specify the solution to equation 
(4). There are many such possible constraints 
dependent on the physical system under con- 
sideration. Among these are : 

(i) The interface temperature is known. 
(ii) The temperature at either end is a known 

constant. 
(iii) Flux conservation conditions at the ends. 

With these conditions in mind, we now turn to 
the evaluation of the radiative fluxes, Fj, in 
either media. 
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of the derivation are not repeated here. As is 
convenient for all radiation problems, the 
optical distances are defined as : 

rr = i xi dx for material I (0 < x < Li) (7a) 
0 

and 

rii = f xii dz for material II (0 < z < L,,) (7b) 
0 

where Xj is the absorption coefficient. It can be 
shown [2] that the amount of radiant flux 
emitted at a point q which actually reaches the 
plane of interest (corresponding to Z) may be 
generally written : 

a; G&I) I?%(/7 - vi)1 (8) 

where n is the index of refraction, E&) is the 
black body emissive power given by Stefan- 
Boltzmann law (Ebj = CT;); and E,(x) is the 
tabulated exponential integral function defined 
as: 

E,(x) = i$“-‘exp(-x/$)dlj, 
0 

= ~~-~exp(-~~)d~. (9) 

The appearance of the exponential integral 
function, which is more slowly damping than 
the exponential function, can be understood 
physically by noting that radiation from all 
angles to the single axis of interest contributes 
to radiation intensity at any point in contrast 
to the simpler case of uni-directional radiation. 

Little additional insight into the effects of- 
radiative heat transport can be gained at this 
point by continuing the general procedure. It 
proves much more informative to treat a 
specific example where the problem may be 
solved and the results evaluated. The mandatory 
assumptions which are made also serve to 
point out the limitations of the present analysis 
and, in some cases, suggest areas for further 
investigation. 

(b) Specijc example 
For illustrative purposes and for obtaining 

a solution, the physical model in Fig. 1 is 
modified to that given in Fig. 2. This would be 

Solid 

I 

G-- 
/’ 

9s-- or 

t/s --JL 

.Y- / 1 I _ 
LS 0 LL L,+L, = 

FIG. 2. Physical model and schematic of the corresponding 
temperature dist~bution for a solid phase in thermodynamic 

equilibria with its melt. 

typical of an infinite diameter crystal in thermal 
equilibrium with its melt. The upper surface of 
the crystal exchanges radiant energy with a 
chamber at constant temperature T,. The media 
between the upper crystal surface and the 
chamber can, in general, be any inert gas but 
for simplicity we assume it to be a vacuum. 
The irradiation of the solid/gas interface due 
to radiation leaving the chamber walls is G,. 
The solid/liquid interface temperature is as- 
sumed to be the equilibrium melting tem- 
perature, T,. Since the primary interest is 
in the effects caused by radiation, the complica- 
ted details introduced by convective transport 
are neglected. The bulk bath is assumed to be 
efficiently mixed so as to maintain the liquid 
at constant temperature (T,) up to a distance 
I,, (the thermal layer) from the solid/liquid 
interface. Within the thermal layer, convective 
transport is assumed negligible? or, equivalently, 
---- -. _.~ ---.-.. -- _---___- 

t This assumption would hold for the case of a rotating 
crystal in which the forced convection just overcomes the 
natural convection flow in the opposite direction. 
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u = 0. The following assumptions have also 
been made in this analysis. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Scattering is negligible compared to ab- 
sorption. 
Interreflections of radiation between the 
liquid/solid and solid/gas interfaces are 
negligible. 
Reflection and transmission of radiation 
at the liquid/solid interface and trans- 
mission at the solid/gas interface are 
diffuse. 
Both media are assumed gray, i.e., the 
spectral absorption coefficients have been 
averaged over the entire wavelength spec- 
trum and replaced by a Planck mean. 
As a result, the optical distances are 
defined as the products of the absorption 
coefficients and the distance of the plane 
of interest from the interface. Therefore 
0 < 5 < rL = x~L, and 0 < r < rs = 
x,L,. (< is the optical distance in the 
liquid and corresponds to z in the solid.). 
The index of refraction in each phase is 
assumed constant with respect to varia- 
tions of temperature, wavelength, etc. 
The thermal conductivities are assumed 
independent of temperature. 
The radiation properties of the interfaces 
are independent of direction ; e.g. t,, = 

t,, where tij represent the transmittance 
going from the ith phase to thejth. 

By considering all of the possible sources of 
radiative flux consistent with our model, the 
radiative flux in the solid (positive x-direction) 
is seen to be: 

F&) = 2[[ &%i(?) &(r - 4) drl 

- 7 &KY(V) WV - r) d? 

+ J&(r) - t&,Ws - 41 (104 
where the radiative flux crossing the liquid/solid 
interface in the positive x-direction, Js, is 
defined as : 

J, = 2{t,s [r &,,K) E,(i) d5 

rL+r* 

+ QS[~ &%,trl) WI) dv 

+ ksW&)l>. W’b) 
In these equations it is clear that r, = x,L,; 
Ebj is the black body emissive power in the jth 
phase; t, represents the transmittance of the 
solid/liquid interface ; rLs the corresponding 
reflectance (tLS + rLs = 1); and the t,, the 
transmittance of the gas/solid interface. 

In direct analogy to the above, the radiative 
flux in the liquid phase (positive z-direction) is 
given by : 

X+%3 

- .s &%,(O -W - 5) dil (114 

where JL, the radiative flux crossing the solid/ 
liquid interface in the positive z-direction, is 
defined as : 

+ ;1. &%A) &Kl XII. UW 

It has been implicitly assumed in the above flux 
equation for the liquid that the bulk bath is 
optically thick so as to neglect reflections from 
r = ZL + r,. Since the temperature in the 
completely mixed fluid (denoted by the sub- 
script co) is constant, the integrals involving 
E,, can readily be evaluated yielding : 
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which can be substituted in equations (10) and Table 1, Dimensionless parumeters$u- radiation heat trunsjer 

(11). 
It proves convenient, in presenting the results, 

to introduce dimensionless variables. These are 
presented in Table 1. Note, that the conditions 
in the well-mixed liquid (denoted by subscript 
cc) were arbitrarily selected as reference. The 
conservation of energy in the bulk media are 
thereby expressed, from equation (4) : 

and where 

+ -q:.(2) + N($X). (14) 
J:: = 2[rs, [nZ2 1 %(rl) &(ri+) dy + rcsG:Ws) 

The required boundary 
specific example become : 

q; = _q; 

OS = tlL = 0, at 

or,= 1 at 

conditions for this 

(154 
0 

+ MT,) - UT, + L)l>. (17b) 
xx = z* = 0 (15b) 

z* = 1. 
(15c) (c) Method of solution of energy equations 

In dimensionless notation the radiation fluxes 
Each of the conservation of energy equations 

(equations (13) and (14)) is of the non-linear, 
are expressed by : 

+ b’Z&(41~ 
and for the liquid 

W5) = 2[f ‘$(0 E& - i) di 
0 

- @W,(: - i')di + J;E,(5) 

- MT, - 5) + -MT, + zco - 01 

integro-differential type ; the solution of which 
was discussed in detail by Viskanta and Grosh 
[2]. Their conclusion was that the best that 
could be hoped for in the way of a solution was 
via numerical or approximate techniques. In 

(lea) 
the present problem, the solution is further 
complicated by the fact that the two conserva- 
tion equations are coupled via the interface 
boundary conditions. Due to the radiative heat 
transfer, each phase depends on the tempera- 
ture distribution in the other (except in special 
case where the interface is totally reflecting 
(t,, = 0)). To obtain a solution, therefore, in 
this complex system, the method of successive 

(16b) 
iterations was applied as follows. 

For a zeroth approximation, a temperature 
distribution is assumed in both media (for 
example, by neglecting the radiation), o,,(z) 
and 8,,(t). Since the integrations required in 
the evaluation of the radiative fluxes are quite 
complex and time consuming to perform by any 
iterative method of solution, the following 

(17a) alternative procedure was employed. The fourth- 
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power of the assumed temperature distributions 
are fitted to a polynomial of the form : 

where the coefficients, ai and bi, are determined 
by a best-fit, least-squares, procedure. The 
integrals of the form 1 e4(~) E,(z - q) dy there- 
fore obtain the form 

which can be analytically integrated since : 

s 
xmEn(ux + b) dx 

m 

=- c m! 
~~E”+i+l(ax + b) (18) 

i=. (m - i)! a 

for m > 0 and where a and b are constants. As 
a result, FE(l) and F;(z) can be completely 
determined for the assumed solutions. With 
the value of 42 corresponding to the assumed 
solutions, the conservation of energy equation 
in the liquid (equation (14)) can then be nu- 
merically integrated by any of the available 
methods for solving first order, non-linear, 
differential equations (Runge-Kutta, Adams- 
Moulton, Kurra-Merson, etc.). Integration is 
initiated at the interface where the temperature 
is known (equation (15b)) and continued to 
Z~ The deviation of QL(zL) from the boundary 
condition value of unity (equation (1%)) is 
used to correct the derived normalized tem- 
perature at every point; i.e., zero correction at 
the interface increasing linearly with distance 
to the total deviation at r = zP This deviation 
also provides an improved value of the total 
flux, qz, for the next iteration. As a first approxi- 
mation, the improved solution for the liquid 
temperature is substituted into the expression 
for Fi directly. Maintaining the assumed solid 
temperature distribution, the integrals are eval- 

uated and the differential equation re-solved.? 
This type of iterative scheme is continued until 
one obtains convergence, at all points, of 
successive iterations to the desired accuracy. 
However, we have found that an alternate 
procedure, which greatly shortens the conver- 
gence time, is to extrapolate (or interpolate) 
between two successive approximations to ob- 
tain the improved approximation for the di- 
mensionless temperature at any point. Once 
convergence is obtained for the liquid, the solid 
temperature distribution is obtained in much 
the same manner except that in this case the 
total flux, &, is known from the conservation 
boundary condition (equation (Isa)). Therefore, 
one must converge, by iteration, only on the 
temperature in the solid while keeping the liquid 
temperature fixed. The problem is not, however, 
complete even after convergence is obtained 
in the solid since the liquid temperature solution 
depends on the solid distribution through 
Jt (equation (17b)). With the improved solid 
solution, the liquid conservation equation must 
again be solved and this procedure continued 
until convergence occurs simultaneously in 
both phases. 

Before proceeding with the actual results, it is 
perhaps important to mention that the existence 
and uniqueness of solutions of such non-linear, 
integro-differential equations were discussed 
and shown in [3] and [4]. 

3. RESULTS 

(a) General presentation 
In this section, the results for the illustrative 

example outlined above are presented. These 
results are given in terms of the dimensionless 
parameters identified in Table 1 so that they are, 
with appropriate data, applicable to a variety 
of particular systems. Each of the physical 
parameters which were found important in 

f It has been found that convergence is improved by 
averaging the zeroth-approximation and the improved 
zeroth-approximation to provide the trial solution for the 
next iteration. 



understandingtheeffectsintroducedbyradiation Table 3. Calculated temperature gradients at the solid-liquid 

are varied via the appropriate dimensionless interface for simultaneous radiative and conductive heat 

variables. In Table 2, a summary of the physical transfer 

parameters to be studied are shown as are the 
corresponding physical parameters which were Identification 

Corresponding 

varied. The data for the reference case used is 
to Fig. 

given in the lower portion of Table 2. Only the 
mathematical parameters of interest were varied 
relative to the standard, to obtain the individual 
results. 

Table 2. Physical parameters and corresponding 
mathematical parameters varied 

Physical Parameters of 

parameter mathematical 
Figure 

number 
varied problems 

kL ts, 3 

xs zs 4 

TM 0, 5 

XL TL> T, 6 

Ls Ts, N, L&s I 

LL. TL~ L&s 8 

(see Table 2) 

t LS - 

t ,_i:: 

S 

Ts = 1.0 
Ts = 2.0 

Bu = 0.85 
8, = 0.90 
TL = 0.25 
TL = 1.0 

Ts = 0.5 
Ts = 1.0 

TL = 0.25 
TL = 1.0 

3-8 2.51 0.34 -0.33 
3 1.18 0.54 - 0.52 
3 1.87 0.43 - 0.42 
4 2.71 0.31 -0.30 
4 2.42 0.35 - 0.34 
4 2.19 0.38 -0.38 
5 1.75 0.29 -0.27 
5 1.78 0.27 -0.23 
6 2.58 0.30 -0.28 
6 2.13 0.35 -0.35 
I 1.62 0.33 - 0.20 
7 3.11 0.34 -0.41 
8 3.42 0.24 - 0.46 
8 1.78 0.53 - 0.26 

Data for reference case 
TS = 0.8 LJL, = 0.5 
tL = 0.5 0, = 0.8 

T, = 5 G: = 0.01 

N=5 t 

t ;I : ;:; 

nB = nsInL = 1.33 

k,* = kslk, = 2.0 
~~_~_ ~____. ~_ 

The results of this investigation are presented 
in graphical form in Figs. 3-8. The numerical 
method of integration employed was the Kutta- 
Merson technique [5] with a convergence 
criterion for successive iterations of less than 

06 

1 per cent. In each case, the “a” figures are the. t 

temperature distributions with the insert relating 
the change of the interface gradient in the liquid 
(d6Jdz*)i and the total flux in the solid (4;) 
with the parameters describing the parameter 
being varied. The net dimensionless flux and the FIG. 3(a). Temperature distributions for simultaneous heat 

dimensionless gradients of the interface, in transport by radiation and conduction for a solid in intimate 

both the solid and the liquid, are tabulated in 
contact with its melt-shows effects of varying the trans- 
mittance of the interface. Insert gives dimensionless interface 
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Table 3. Each of the “b” figures are the net temperature gradient in the liquid and net dimensionless flux. 
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‘\ 
\ 

F’ 
‘. 

-0.3 .I --_____“i4 -- __-- 

-04 L 0.8 

-0fl 
t 

FIG. 3(b). Net dimensionless radiative fluxes corresponding 
to Fig. 3(a). 

FIG. 3(c). Radiative flux components in the liquid corre- 
sponding to Fig. 3(b). 

I 
I 

I.0 0 
J 
I.0 

X’ I’ 

FIG. 4(a). Temperature distributions for simultaneous heat 
transport by radiation and conduction for a solid in intimate 
contact with its melt-shows effects of varying the absorpt- 

ante of the solid phase. 

I a3 

10 
I 

0 I-O 
X’ I' 

-0-I ‘,, 

\ 
_0.2_ ‘*. 

‘-__ ---..---- 
\ 

F' -03-‘. 
\ 

“1--__.___/--’ 

---______---~r 
-0.5 - 

-06- 

FIG. 4(b). Net dimensionless radiative fluxes corresponding 
to Fig. 4(a). 
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FIG. 4(c). Radiative flux components in the liquid corre- 
sponding to Fig. 4(b). 

dimensionless radiative fluxes corresponding 
to the respective temperature distributions. 
The conductive flux can, of course, be obtained 
by substitution of q* and F* in the energy con- 
servation equations. The net radiative fluxes 
for certain cases have been decomposed into 
their component parts (see equations (16) and 
(17)) and the results presented in the “c“ figures. 
The labels right, left, etc., in these figures indi- 
cate the source of the particular flux relative 
to any arbitrary plane in the media. These c-plots 
will be used in the discussion section below to 
interpret the temperature and flux curves of 
parts “a” and “b”. Although, in certain cases, 
several dimensionless parameters were varied 
simultaneously, the temperature and flux curves 
use only one of the variables for identification 
(e.g., for Fig. 6, zL and z, were both varied by 
variation of ICY but in this case z, = 10~~). The 
other parameter values for each case, where 
not obvious, can be obtained by simple calcula- 
tion or from the insert of the “a” figures. For 

convenience, the type of line used in each figure 
is consistent throughout. 

(b) Discussion 
The particular model which is being con- 

sidered was chosen so that direct comparisons 
could be made between systems having different 
combinations of optical properties for the two 
contacting media. One is free to arbitrarily 
select the interface temperature (at .x* = z* = 0) 
as well as the optical properties in both media. 
In general, the net flux, q*, in the system is there- 
fore determined by the interface temperature 
and the optical properties of liquid (see Fig. 2), 
the temperature of the solid/gas interface adjust- 
ing accordingly. As a result of this freedom to 
constrain the conditions in the liquid, the tem- 
perature in the solid is occasionally found to 

IO 

X' 

1 
10 

I' 

FIG. 5(a). Temperature distributions for simultaneous heat 
transport by radiation and conduction for a solid in intimate 
contact with its melt-shows effects of varying the melting 

temperature relative to the far field liquid temperature. 
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I 1 

I-0 0 I-0 

X’ \ Z’ 

-Ol-‘\ --_ -______-- 

-0.2 - 

‘. 
-. 

F’ -0.3 - 
--__ 

--______-* 
__-- 

-o,s- 
FIG. 5(b). Net dimensionless radiative fluxes corresponding 

to Fig. 5(a). 
I.O- 

-e,+t=o4 

O.6-‘\ 
_---&;().g 

‘\ 

‘\ 
‘A 

0.6- 

-0.6- 

FIG. 5(c). Radiative flux components in the liquid corre- 
sponding to Fig. 5(b). 

exceed the temperature of the heat source, i.e. 
the liquid bath for z* 2 1. This is a violation 
of the Second Law of Thermodynamics and, 
therefore, such results are to be ignored since 
they must correspond to situations which are 
grossly removed from physical reality. 

The physical principal which must be remem- 
bered in trying to interpret the results of these 
calculations is the use of steady state conditions. 
In such circumstances, the net energy flux must 
be a constant throughout the medium which 
requires that each of the participating modes of 
heat transfer compensate for the others in such 
a way as to maintain the sum a constant. 
An immediate application of this constraint is 
to explain the temperature minimum which 
occurs in the solid in certain cases. In the results 
where this minimum is observed, changes in the 
properties of the liquid have forced a decrease in 
the net flux. To account for this, a negative 
conductive flux is required in the solid wherever 

I I I 
I-0 0 IO 

X' I' 

FIG. 6. Temperature distributions for simultaneous heat 
transport by radiation and conduction for a solid in intimate 
contact with its melt-shows effect of varying the absorpt- 

ante of the liquid phase. 
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FIG. 7. Temperature distributions for simultaneous heat 
transport by radiation and conduction for a solid in intimate 
contact with its melt-shows effect of varying crystal (solid) 

length. 

the optical parameters of this phase require that 
the radiative flux be larger than the total flux. 
Although the constancy of energy flux does, in 
general, explain most of the trends observed 
in the results, careful examination of each of the 
graphs provides more detailed understanding of 
the radiative effects. 

In dealing with transparent materials, because 
the radiative emission increases with the fourth 
power of the absolute temperature, it is apparent 
that the radiative flux resulting from regions of 
high temperature will exceed that from regions 
of relatively lower temperature. Therefore, in 
dealing with a material which has a temperature 
gradient superimposed on it, the radiative flux 
from the higher temperature region will exceed 
the flux from the low temperature region. The 
higher temperature region therefore acts as a 
source of heat to the lower temperature region. 
With respect to the over-all shape of the tempera- 
ture distribution, particularly in the second 
phase, one must consider the net flux which is 
determined by the optical properties of the 

first phase. For the illustrative example, this is 
so because for all calculations, the boundary 
temperatures in the liquid (first phase) have been 
specified and thus the net flux is determined by 
the liquid phase. 

For example, consider Fig. 3 where we have 
varied the transmittance of the solid/liquid 
interface from totally reflecting (t,, = 0) to 
80 per cent transparent (t,, = 0.8). In this case, 
the boundary temperatures were fmed at 8, = 
0.8 and unity for the interface and the bulk 
liquid boundary, respectively. As t,, is decreased, 
the net radiative flux is decreased because of 
the increased magnitude of the reflected term 
(see Fig. 3(c)). In accordance with the earlier 
results of Viskanta and Grosh [2] as the net 
radiative flux decreases the corresponding tem- 
perature distributions are observed to become 
more convex downward. With respect to the 

FIG. 8. Temperature distributions for simultaneous heat 
transport by radiation and conduction for a solid in intimate 
contact with its melt-shows effect of varying the boundary 

layer thickness. 
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solid phase, 4: must also decrease as t,, is 
decreased. However, since the optical properties 
of the solid have not been changed, a large 
radiative flux builds up as x* + 1.0. Only 
through the development of a negative tem- 
perature gradient and, thus, a negative con- 
ductive flux can the radiative term be 
counteracted to restrict 4: to a small, constant, 
value throughout the solid. Had there been a 
large reflected term from the gas/solid interface, 
the temperature would not develop a minimum 
in the solid for t,, = 0. 

An apparent contradiction, with respect to 
the development of a temperature minimum 
in the solid as q* decreases, occurs in Fig. 4 
where the optical thickness zs of the solid phase 
has been varied. This, however, is under- 
standable since the magnitude of q* is being 
constrained by the properties of the solid not 
the liquid as in Fig. 3. 

The mathematical procedure for the special 
case of the solid phase being completely opaque 
(zs = co) requires further discussi0n.t The solid 
no longer permits any heat transport by 
radiation and thus the energy conservation 
equation for that phase becomes that of pure 
conduction. Radiation emitted in the solid 
(proportional to T$ is immediately attenuated 
by the adjacent layers since the absorption 
coefficient is infinite for a finite physical thick- 
ness. However, the atoms in the solid phase at 
the interface emit half their total energy into the 
partially transparent liquid phase. Therefore, 
there must still be a term in the radiative flux 
for the liquid phase which is transmitted from 
the surface of the opaque solid phase. One may 
obtain the value from the general term of 
equation (17), i.e. 

tLsns *’ % %(tl) Mi9 dv 

by considering that &((z) = &, when zS = co. 
Thus : 

t The mathematical procedure outlined here is ana- 
logously applicable for the liquid phase being opaque and 
the solid being partially transparent. 

which is in direct accord with the above physical 
argument. In this special case, the transmittance 
(tLS) is directly analogous to the emittance (E) 
which one would have anticipated in the 
results, since a = 6 and a + I = 1. 

Another interesting feature of Fig. 4, which 
requires explanation and again shows the 
importance of considering the flux component 
curves, is the shift in the liquid temperature 
distribution as the optical thickness of the solid 
increases. This change coincides with a decrease 
in the net radiative flux in the liquid (Fig. 4(b)). 
Examination of the individual flux components 
shows that the term which contributes most to 
the reduction of the radiative flux in the liquid 
is the component of the interface term which 
is transmitted from the solid ; i.e. 

2hns*2 7 f%h) E2(d drl. 
0 

(The difference in the reflected fluxes which also 
affects the net interface term between zs = 0.5 
and zs = 2.0 is negligible. This can be verified 
by the small change in area under the curves 
labeled “right” which are, in turn, further 
decreased in magnitude by the reflectance 
rLs = 0.2). This result is understandable since, 
for any specific temperature distribution in 
the solid, as zs increases, i.e. as the solid becomes 
more opaque, it must emit more radiation. 
Mathematically, the above term increases since 
the magnitude of the integral increases between 
the limits 0 and zs, as the optical thickness in 
the solid increases. The larger is the value of 
zs, the larger is the average temperature over 
the region of integration. 

In Fig. 5, the results of increasing the melting 
temperature relative to the far field are seen to 
be consistent with the discussion above, both 
mathematically and physically. As the interface 
temperature approaches that of the far field, 
the difference in the radiative flux between the 
high and low temperature regions decreases. 
This is shown by the decreasing net radiative 
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flux in the liquid (Fig. 5(b)) as 8, increases. equations, for a model which simulates a 
The reason for this decrease in radiative flux crystal growing from its own melt. The numerical 
as the interface temperature approaches that method of solution was discussed and the 
of the bath is clear upon examining the com- results presented as a series of dimensionless 
ponent radiative fluxes given in Fig. 5(c). The temperature and flux distributions for various 
figure shows the large increase in the interface combinations of optical and physical parameters. 
term as OM increases. This is primarily caused The interpretation of these results, which should 
by the larger flux transmitted from the solid be indicative of any two such contacting media, 
which is now at relatively higher temperatures. is found to be greatly facilitated by decomposing 
Since no changes are made in the physical the net radiative flux into its component parts. 
properties of the solid, that phase must develop Qualitatively, the consequences of the radiative 
a temperature minimum in order to satisfy flux can be understood with the aid of the 
equation (13) and the gradient becomes nega- component flux curves and recalling that the 
tive to oppose the large F,* which develops as assumption of steady state requires the total 
x* + 1.0. flux to be constant throughout the system. 

In the remaining results presented, Figs. 6-8, 
only the temperature distributions are given. 
The variation in the radiative fluxes are in 
accordance with the fluxes given in the insert. 
All of the observed details can be explained in 
terms of the rationale employed above. It is 
important, in interpreting these results, to 
remember that the problem has been formulated 
in dimensionless parameters and the presented 
results are not always directly indicative of the 
physical variations. Comparison, in these cases, 
must be made by converting the data to the 
appropriate dimensional form. 
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Rkum&Le transport d’tnergie par conduction et rayonnement simultanb entre deux milieux en contact 
intime est consid& en insistant principalement sur la formulation mathhatique du flux de rayonnement. 
Pour obtenir une certaine connaissance des effets introduits par un transport par rayonnement, le formidable 
probl&me g6nCral est simplifi6 en une diffusion unidimensionnelle en rtgime permanent entre deux milieux 
partiellement transparents en contact thermique intime. La mtthode numtrique de r&solution des 6quations 
intbgrodiff&entielles coupl6es et non-linbaires qui en rksultant est dtcrite en d&ail. Les rtsultats sont 
present& sous la forme d’une s&e de la tempbature dimensionnelle et des distributions de flux correspond- 
antes pour un grand nombre de propri&s optiques et physiques. L’interprCtation de ces resultats est 
don& B la fois sur la base d’un raisonnement physique et par rapport & la formulation mathtmatique. 
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Zusammenfassung-Es wird der Energietransport betrachtet bei gleichzeitiger Leitung und Strahlung 
zwischen zwei Medien in inn&em Kontakt, wobei das Hauptgewicht auf die mathematische Formulierung 
der Strahlungsverhlltnisse gelegt ist. Urn Kenntnis von jenem Einfluss zu erhalten, der vom Strahlungs- 
austausch herriihrt, wird das komplexe allgemeine Problem auf die eindimensionale, stationare Uber- 
tragung zwischen zwei teilweise transparenten Medien in innigem thermischen Kontakt zuriickgeftirt. 
Die numerische Losungsmethode ftir die resultierenden, gekoppelten, nicht-linearen Integral-Differential- 
gleichungen ist im einzelnen beschrieben. Die Ergebnisse sind wiedergegeben als eine Reihe von Temperatur- 
und entsprechenden Stromverteilungen ftir eine Vielzahl von optischen und physikalischen Eigenschaften. 
Eine Auslegung dieser Ergebnisse erfolgt sowohl auf Grund physikalischer Uberlegungen als such im 

Hinblick auf die mathematische Formulierung. 

AHHOTBqWS+-PaCCMaTpHBaeTCH KOHAyKTklBHO-paHPIaL(55OHHnt 3HeprOO6MeH MelKjQ' RBJ'MR 

KOHTaKTHPYlO~HMll Cpe~aMH,IIpHWM J'IIOP AWlaeTCFl Ha MaTeMaTHWCKyIO 3aIIHCb JIJ'WCTOrO 

IIOTOKB. YTO6bl IIOHRTb BbI3BaHHbIe JIYWCTbIM TeIInOO6MeHOM 3@&KTbI, o6wan 3aAasa 

CBOAIlTCfl K OJ&HOMePHOi yCTaHOBHBIIIei%H ~ki4$5'3ItH MWKJQ' RBYMR YaCTWiHO IIpO3paYHbIMtI 

CpeAaMH, HaXOAFiIIJMMHCR B HeIIOCpeACTBeHHOM TeIIJIOBOM IIOTOKe. ~OQO~HO OIIHCblBaeTCR 

VHCJIeHHbItt MeTOH peIIIeHHR BbIBeAeHHbIX Hl?JIPiH&HbIX HHTerpO-AH~~epeHq~a~bHbIX YpaBHe- 

HLIti.Pe3JVIbTaTbl IIPeACTaBJIeHbIB BItHe pH~OBpa3M.SpHOtTeMIIepaTypbI~COOTBeTCTByOIlJ~X 

paCIIpE!#VIeHMti IIOTOKa C YYeTOM pa3JIWIHbIX OIITWleCKHX I? f&3INWKMX CBOkTB. flaHa 

@i311W?CKaR II MaTeMaTR'lWKaH HHTepIIpeTa~klH pe3J'JIbTaTOB. 


